
1

1

Execution through State Changes
10.03.2020, 10.06.2019 Arve Meisingset

Preface

This paper is a working document, where I explore use of a multi-automaton
architecture to execute Existence logic. I realize that enforcement of consistency
implies that multiple automata will have to work as if one centralized automaton is
handling State Changes. Execution without handling consistency may be done with a
much simpler automaton.

Table of Contents

1 States and Status...2

2 Overview... 3

3 Execution...4

4 Execution of the Condition branch... 5
5 Execution of Conditions

6 Execution of the Instruction branch... 11

7 Overview of Insertion logic... 15

8 Copying..16

9 Deletion...17

10 Instruction...19

11 Execution overview...20

12 States and Naming..20

1 States and Status

We assume that each data item is an automaton. Each item is communicating with
its nearest items only. The candidate nearest items are:
 Superior and Subordinate
 Next and Previous
 Condition and Instruction

2

2

Execution of a Condition results in one item acting as a read head of the condition
branch, and another item is acting as a control head that is synchronized with the
read head, whenever the Condition is Satisfied.

Execution of an Instruction results in one item acting as an instruction head of the
instruction branch, and another item is acting as a write head that is synchronized
with the instruction head, copying the instruction items into the write branch at
proper places. The instruction branch may contain sub-Conditions for navigation,
and may refer via the condition branch to arguments for the write operation.

When arriving at a Tip of an instruction branch, the read head may give the control
to the control head, copying its Tip-s into the Tip-s of the write branch. See details
below.

Each item holds a State, telling which item it is currently trying to communicate with,
and on if the transfer of control with these items is to be moved
 Forwards towards the Tip-s of the current branch or
 Backwards towards its root

For handling information on what has happened remote from an item, each item
may hold three statuses:
 Status1, having the value set Conditioned, Conditioning, Instructed, Instructing,

empty
 Status2, used for reading operations, having the value set Satisfied, Failed,

empty
 Status3, used for writing operations, having the value set Satisfied, Failed, empty

The various statuses typically appear in different branches. Hence, they may be
merged into one attribute, if adequate care is taken of the overlaps. However, use of
three attributes makes the reasoning clear.

If the data items were not an automaton each, then the statuses may be taken care
of in the temporary memory of the computer, and the tagging of each item is not
needed. We do not discuss these issues of practical implementations in this paper.

When executing a condition branch, all control branches have to be checked to find
any branch that fully satisfies the Condition to its Tip-s. Status2 and Status3 are
updated when backtracking through the branches. Therefore, the fully Satisfied
paths can only be found in a second run.

Sub-Conditions are just additional Condition-s that each needs to be Satisfied.
Instruction branches are different. Their first segment is a kind of condition, marked
as an Instruction, that needs to be Satisfied, and is used to navigate to the right
insertion point. Note that additional Failed Condition-s may be used for deletion. The
second segment of an instruction branch is copied into the insertion points, ie. Tip-s
of the write branch getting Status3 (Satisfied. The third segment copies from the
Tip-s of the control branch to the Tip-s of the write branch.

3

3

The three segments are separated by Insertion symbols (><). An Insertion at the Tip
of an insertion branch indicates copying from the control branch. The Insertions may
be combined with functions, eg F<>, ><. A functions will contain a schema reference
to its definition. It will contain an Insertion and may have a Condition. These may or
may not contain further navigation.

Note that the three segments do not correspond to the three statuses.

2 Overview

We will first outline execution of a Condition branch. This branch may contain
several sub-Conditions and several Instructions. Only initiation of the Instruction
execution will be covered, while the full execution is left for a subsequent section.

Any Condition branch is validated against a Control branch somewhere else in the
data tree. The Condition branch may be Satisfied by multiple Control sub-branches.
Likewise for sub-Conditions and other sub-branches. Hence, the execution mapping
from items in the Condition branch to items in its Control branch is one-to-many.
The Condition branch contains navigation instructions for where to find its Control
branch. In fact, it is the Control branches which are Satisfied or not.

Any Condition branch may branch off into several sub-branches, not necessarily
initiated by sub-Conditions. For the main Condition to be Satisfied for a Control
branch, all sub-branches of the Condition have to be satisfied simultaneously. Hence,
if a sub-branch of the Control branch satisfies the Condition having more
sub-branches, then the corresponding Control sub-branches have to be satisfied, as
well. For the Condition to be satisfied, the sub-branches cannot be satisfied
independently of each other.

Any Condition branch may or may not contain navigation to Superior-s or
Subordinate-s. Navigation to the most Superior is executed first. The other branches
are found during Backtracking. I have been wondering if the opposite sequence
could be more natural, but the subsequent logic depends on executing the longest
paths first.

At each level of Forward execution to Subordinate-s, any Condition is executed first,
then the Subordinate is executed. Instructions are found during Backtracking, and
thereafter the Next.

If a Condition is Satisfied, execution continues to the Subordinate at the Conditioned
item. If the Condition Fails, the Conditioned item may be deleted.
An Instruction is executed if the controlled item corresponding to its Instructed item
is Satisfied during Backtracking. If not, the execution continues to its Next.

4

4

In the following algorithm we will use Go-to, as we imagine a clock work rotating
though the same sequence of states for each new item. This may be inefficient, and
formulations using function calls may be more convenient. The algorithm became
much more complex than I envisaged, due to the need for maintaining the overall
‘consistency’.

I believe there is a need to develop more primitive automata for simpler condition
and instruction branches. Preferably, any entity should be able to serve as a
primitive automaton for any other entity.

3 Execution

Each item is executed according to the program below. The execution may ‘Move’ to
a neighbouring item, as indicated.

A Move of a read head will impose a Move of the corresponding control head. If the
Move of the control head Fail-s, a Status2 (Failed is set on the controlled item or its
superior, and the execution is wrapped up in the Backwards sequence.

When a Condition is found, the conditioning item is tagged with a Status1
(Conditioning under the read head. When backtracking, this status will separate this
item from an Instruction. The Status2 (Satisfied will tag the controlled items for
finding back to the Condition without always having (full) name tags.

We have assumed that each data item acts as one and its own read-write head.
Therefore, Status2 (Succeeded or Failed, is copied between the controlled items. The
Status tags show sub-paths through the controlled data tree. The paths tagged with
Status2 (Succeeded will in a second run be used to fetch data satisfying a Condition.

Note that when having nested Conditions, ie. additional Conditions within a
Condition branch, the same read head proceeds into the sub-condition, and the
same control head continues from its current position. It is only at the original
Condition that the read head and control head depart in different directions from
the same position. The control head is controlled by the read head.

The instruction head is a role of the original read head. The write head is a role of
the original control head. See a separate section on Execution of the Instruction
branch.

In the steps in that subsequent section, the execution may arrive at an item when
having carried out a previous step, or when the tested subsequent entity did not
satisfy the conditions.

5

5

4 Execution of the Condition branch

For each main step, test in the following sequence if it has a reference to one or
more of the nine alternatives. If Yes, carry out the sub-steps, which may result in
moves to subsequent steps.

Note that sub-Conditions are found and parsed already during Ascending and
Descending Forwards. Instructions are found and parsed during Ascending and
Descending backwards. The execution of Instructions is not covered in this section.

This is a first draft that will be modified later.

Ascending forwards
1 Forward Condition

a) Test if the item under the read head has a Condition
b) If Yes,

i. Move the read head to the Conditioning item
ii. Tag the Conditioning item with the Status1 (Conditioning
iii. Create a control head at the Conditioned item, or in case of a

sub-Condition, the control head is already at a controlled item
iv. Tag the Conditioned item with Status2 (Satisfied, or in case of a

sub-Condition, tag the controlled item with Status2 (Satisfied
v. Execute the Conditioning item, starting at step 1

c) If No,
i. Go to step 2

2 Forward Superior
d) Test if the item under the read head has a first Forward Superior
e) If Yes,

i. Test if the control head has a Superior, ie. a Superior item of the first of
the recursively Forward Previous

ii. If Yes,
1. Move the control head to the Superior item
2. Copy Status2, eg. (Satisfied of the sub-sequent controlled item, ie.

from the passed Subordinate item
3. Move the read head to the Superior item
4. Execute the Superior item, starting at step 1

iii. If No,
1. Set Status2 (Failed on the controlled item, ie. on the current

Subordinate item of what is looked for
2. The read head remains at the corresponding item
3. Go to step 3

f) If No, then this is the Top
i. Go to step 1

6

6

ii. When descending to Forwards Subordinate, do so via Forward
Subordinate Next, ie from the second Subordinate, as the first
Subordinate is Backwards Subordinate

Descending forwards
3 Forward Subordinate

a Test if the item under the read head has a Forward Subordinate item
b If Yes,

i Test if the control head has corresponding Forward Subordinate items
ii If Yes,

1. Move the control head to the corresponding Forward Subordinate
items; note that there may be more than one in a list

2. Copy Status2 (Satisfied on each controlled item, from the passed
Superior item

3. Move the read head to the Subordinate item
4. Execute the Subordinate controlled items, starting at step 1 for

each
iii. If No

1. Set Status2 (Failed on the controlled item, ie. on the Superior item
of what is looked for

2. The read head remains at the corresponding item
3. Go to step 5

c If No,
i Go to 5

4 Forward Next
g) Test if the item under the read head has a Forward Next, ie. another

Subordinate of the Superior in addition to the one found in step 3
h) If Yes,

i. Test if the control head has corresponding Forward Nexts
ii. If Yes,

1. Move the control head to the corresponding Forward Next items,
note that there may be more than one in a list

2. Copy Status2 (Satisfied from the passed Superior item
3. Move read head to the Next item
4. Execute the Next items, starting at step 1 of each

iii. If No
1. Set Status2 (Failed on the controlled item, ie. on the Superior of

what is looked for
2. The read head remains at the corresponding Superior item
3. Go to step 5

i) If No,
i. Go to 5

5 Backward Condition
j) Test if the item under the read head has a Backward Condition
k) If Yes,

7

7

i. Test if the item under the read head has Status1 (Conditioning
ii. If Yes,

1. Test if the item under the control head has Status2 (Satisfied
2. If Yes,

a) Move the read head to the Conditioned item
b) The control head remains on its current item
c) Go to step 3 of the read head

3. If No, ie. Status2 (Failed
a) Test if the controlled item has a corresponding Next
b) If Yes, and this is an insert attempt of the controlled item

i. Move the control head to its Next item
ii. Delete the passed controlled item, ie. the Previous item, ie.

discard the attempted insertion
iii. Go to step 3
iv. If the operation is search, and not insertion, then skip

deletion
c) If No,

i. Move the control head to its Superior via step 7
ii. Delete the passed Subordinate controlled item

iii. If No, this is an Instruction
1. Go to step 6 of the Instruction item

l) If No,
i. Go to step 7 of the current item

Ascending backwards
6 Backward Instruction, coming from step 5

1. Coming from Backward Condition without Status1 (Conditioning
2. Test if the item under the control head has Status2 (Satisfied
3. If Yes,

a) Move the read head to the Instructing item
b) Tag the Instructing item with the Status1 (Instructing
c) Keep the control head at its current controlled item
d) The controlled item is already tagged Status2 (Satisfied
e) Go to step 2 of the Instructing item

4. If No, the Instruction shall not be executed
a) Go to step 7 of the Instruction item

2. Backward Previous, coming from step 5 or 6
a) Test if the control head has any Backward Previous corresponding to the

current item under the read head
b) If Yes,

i. For each: Tag the Superior item with the Status2 (Succeeded if it has
minimum one Succeeded of the Backward Previous items
corresponding to the current item under the read head
1. If No, ie. No Satisfied

a) Tag the Superior item of the control head with Status (Failed

8

8

ii. When having finished all controlled items corresponding to the current
read item, test if the read head has a Backward Previous

iii. If Yes, ie. the read head has another Backward Previous
1. If Yes,

a) Move the read head to Backward Previous
b) Go to step 7

2. If No
a) Go to step 8

iv. If No,
1. Go to step 8

c) If No,
i. Tag the Superior item of the control head with Status (Failed, as it is

missing a Subordinate item corresponding to the item under the read
head

ii. Go to step 7.b.ii

7 Backward Superior, coming from step 7 only, ie. from the first Previous
d) Test if the read head has a Backward Superior

i. If Yes,
1. Move the read head to the Superior item
2. Move the control head to its Superior item
3. Go to step 5

ii. If No, then this is the Top, and we know from step 5.c that if this were a
conditioning item, the execution could not come here; therefore, turn
towards the Subordinate
1. Move the read head to the Backward Subordinate item
2. Move the control head to its Backward Subordinate item, which is

remembered/tagged from Ascending forwards
3. Copy the Status2, (Failed or Succeeded, from the Superior to the

current Subordinate item
4. Go to step 9

Descending backwards
8 Backward Subordinate, coming from step 8 only

e) Test if the item under the read head has a Backward Condition, ie. has the
Status 1 (Conditioning

f) If Yes,
i. Go to step 3

g) If No,
i. Test if the item under the read contains a Next item
ii. If Yes, this is another branching downwards

a) Test if the Next item is already executed
i. If Yes, Go to step 9.iii
ii. If No, Go to step 1 of this Next Subordinate item

iii. If No,
1. Move the read head to the Backward Subordinate item

9

9

2. Move the control head to its Backward Subordinate item
3. Copy the Status2, (Failed or Succeeded, from the controlled

Superior to the current Subordinate item
4. Go to step 9

Note that when Descending backwards, the first item at any level above the
Conditioning item is a backtracking item. If the condition branch has subordinate
branches to the Conditioning item, then the first item of these subordinate levels are
not backtracking items.

Note that 7.b.i reads: “Tag the Superior item with the Status2 (Succeeded if it is not
already Failed”. This applies for backtracking through a normal condition branch. If
there is no item in the control branch corresponding to the item in the read branch,
then the Superior item in the control branch fails. If the search fails in a control
branch for one of the items in the read branch, then the Superior item in the control
branch fails. For one item in the read branch, there may be many items in the
control branch that fail, but one has to succeed if the Condition shall succeed. This
way, the ordinary Condition is a strong logical conjunction.

If the condition is a schema reference, see the subsequent section.

5 Execution of Conditions

A control branch of an ordinary Condition - <> - shall be Satisfied at all levels from its
root to its Tip-s. If there are several constraints at the same level, eg an Identifier
attribute group consists of several attributes, or several different attribute values are
given, then all constraints shall be satisfied simultaneously. If not, then this control
branch does not Satisfy the Condition.

A reference between entities is stated as a Condition on the Role that refers to the
other entity. Before execution, this role must be supplied with attributes and values
that refer to the Identifier value of the other entity. Except for this, an ordinary
Condition may be executed in one pas.

Schema references - S<> - are different. The Population has a reference to a Schema.
The references may be recursive, such that a class within a Schema may contain a
schema reference to still another class in a meta-Schema.

When a Contents schema reference is being executed, the Tip of the reference will
contain the entire referenced Schema. Identifiers and other constraining values are
filled into the population by the end user. The filled in values will be selected and
activate the proper subset of the meta-classes, which may include constraints and
derivation to still other classes.

10

10

The filled in values by the end user constrain search activated by this user. These
values typically comprise the Identifier of the root entity, and maybe some attribute
values of other entities. The set of given values typically do not identify entities at
every level to the Tip-s of the Schema. Some sub-branches may be constrained,
others may not.

First, the execution of the search identifies every path that are constrained by the
end user input. In a second run, all values of the specified attributes of Satisfied
entities are retrieved.

All constraining attribute values of entities must be Satisfied simultaneously for the
entity instance to be Satisfied. All other instances of this entity class Fails, and are
excluded from the search result.

If there is no constraint on a subordinate entity or referenced entity class, their
instances are all included in the search result - in the second run. However, the end
user may exclude these by special commands in the user interface.

A satisfied entity instance may contain no subordinate or referenced entity instance.
If so, the entity instance is included in the search result even if the schema contains
more classes. This makes schema Conditions different from ordinary Conditions,
which have to be satisfied to the Tip-s. Search through Contents schema references
produce a kind of disjunction.

The search result is put into a Contents population.

The constraints and derivations, eg by references to meta-Schemata in the
Application layer are only executed during insertion, modification and deletion. The
constraints for search may be validated by the same means before the search.

6 Branching of the Condition branch

The execution is
 first trying to go up and executes the longest sub-branches
 next descends to shorter sub-branches, and
 thereafter, looks for and executes the sub-branches that are going down only,

and
 finally, executes the Condition

It may be preferable to turn the execution sequence, going down first, and then the
longest branches last. This is for further study.
A condition may contain sub-conditions. They are all operating on the same control
branch, but may address different sub-branches. Sub-conditions are not strictly
needed, as sub-branches of the main condition may control the same sub-branches.

11

11

However, use of sub-condition allows these to be terminated before the whole
condition is executed. Also, the main branch may formulate the search request,
while the sub-Conditions restrict the result. If a sub-condition Fails, the controlled
item will be deleted before the main condition is executed. Hence, the effect of
sub-conditions may be different from using sub-branches only. However, deletion as
an effect of Failed Conditions is for further study.

6 Execution of the Instruction branch

The Instruction branch is executed in the same way as the Condition branch with
some additions. The read head continues from the condition branch into the
instruction branch. The control head is controlled by the instruction head from its
current position where the read head, when backtracking, found the Instruction.

The controlled branch may now be called a write branch, even if the first part is a
control processing to the item where the writing starts.

In the case where the Instruction is placed inside the condition branch, the control
branch and write branch will have a common item, which is the root of the write
branch. They may or may not overlap in knots further out.

Often the instruction and write branches are very short. They may for example
update an attribute within an entity, but may take arguments from other entities by
means of their control and condition branches. However, we want also to facilitate
updating of large and complex structures.

In a database application, the Instruction is written within an entity that is updated
by the end user. Here the condition part is short, but the update may result in
editing of an attribute of some other related entity. Hence, the instruction may be
long.

The instruction branch instructs a fixed updating of the write branch. The control
branch provides variable updating. The updating may be initiated by the instruction
branch and be terminated by the control branch, and they may interactively replace
each other during execution. They never work simultaneously.

The placement of the Instruction may identify the common Superior item of all its
updates, ie. where the control head branches off to fetch arguments and to do the
writing.

The fixed copying from the instruction branch to the write branch takes place one
item at a time. The insertion takes place Subordinate to the current position of the
write head.

12

12

The instruction branch may contain sub-Conditions, which may result in deletion of
the item under the controlled write head when the sub-Condition fails. This is for
further study. Note that Failed sub-Conditions do not result in a deletion of some
part of the instruction branch, as the controlled write head is somewhere else.

The instruction branch may contain sub-Instructions, all resulting in insertions by the
same write head. The instruction branch may be split into three segments, delimited
by separate Instructions:
1. The first segment acts much as a condition branch, commanding the write head

to the position where insertions shall start; this is not a real condition branch, as
it cannot result in a deletion

2. The second segment commands copying of the contained instruction segment
into the controlled write branches branching off from what satisfies the first
segment

3. The third segment starts with an empty Instruction, and it copies segments from
the Tip-s of the control branches having Satisfied the condition branches

The reasons for having the first segment within an instruction branch, and not within
a condition branch, are:
 This control shall only take place when the Condition is Satisfied up to this item

in the control branch
 This item in the control branch is the root of the control sub-branches to be used

as arguments in the write operations
 This item acts as the common item between the arguments in the control

branch and the function values in the write branch
 This item cannot result in deletions, as may become the effect of a Condition

The first segment may be substituted by a sub-branch of the main condition branch.
At the Tip of this segment, the second segment, starting with and ending with an
Instruction contains the fixed instructions to be copied into the write branch. The
Instruction at the Tip of this second segment refers indirectly to the variable items to
be found at the Tip-s of the controlled branch. However, now it will not be clear
which Tip-s are used for which purpose. Therefore, we will use an Instruction for the
first segment, as well.

We use the Instruction symbol in three different roles. In a practical implementation,
we may use reserved words to distinguish these roles. These roles are illustrated in
the following alpha-graphic figure:

13

13

---:---------------- Control branch up to variable arguments
-- Contents of variable arguments

<> ‘..’----------------- Main condition branch
><’...’------- Navigation up and down in the

instruction branch
><---- Instructing fixed insertion

>< Instructing variable insertion from
contents of the arguments (second line)

------- Write control branch to fixed insertion
---- Fixed insertion into write control branch

-- Contents of inserted variable arguments

The first segment of the instruction branch must be processed in a first parse, and its
controlled items be tagged with Satisfied before the second segment can be
processed. Here items from the second segment are copied into the Satisfied Tip-s of
the controlled write branches.

In order to distinguish Satisfied items of the evaluation of the Condition from the
Satisfied items of execution of the Instructions, we use a separate Status3 attribute
for the write branch, with the values Satisfied, Failed and blank/empty. This implies
that all items inserted under the write head are tagged with Status3 (Satisfied.
Condition branches within the write branch will have to be tagged by both Status2
and Status3.

How do we distinguish the three segments of the instruction branch? The first
segment follows after the first Instruction symbol. The third segment has no
contents. The second segment follows when coming to an Instruction where the
previous items in the write branch are tagged by Status3.

The copying and writing of fixed or variable items takes place one item at a time. For
example, if values from an attribute group are copied, one value is fetched, then
being updated, thereafter the next value is fetched etc. The values have to be
distinguished from the Tip-s in which they are contained. This may be done by not
tagging the value contents with Status2 (Satisfied, as they are not referenced from
the condition branch, but are implied by the condition branch.

The control branch is tagged with Satisfied and Failed during the backtracking
through the first parse. The Satisfied branches are used for updates in a second
parse.

During the second parse, the second segment is copied from the instruction branch
to the Tip-s of the Satisfied write branches.

If the Tip of the instruction branch ends with still another Instruction, then
arguments are copied from the Tip-s of the control branch beneath the Satisfied

14

14

items. It will be natural to find the Tip-s of the control branch in a second run
through that branch.

When operating on the write branch, instruction branch, condition branch and
control branch simultaneously, it will be convenient to use more than two
synchronized read-write heads.

As the write branch is completed with whatever is stated in the instruction branch,
there is no notion of Failed sub-branches of the write branch, except for
sub-Conditions in the first segment of the write branch. Sub-Conditions in the
second or third segment are inserted, not tested. However, if Condition are
instructed or copied, they may not fit where they are filled in, and may Fail.
Conditions that may Fail are permitted.

Whole sub-branches from the control branch are copied to the write branch
one-to-one if Functions are not involved. Functions may be associated with the
Instructions, eg. F ><.

Functions typically appear as items in the main condition branch, and they both have
a Condition (<>) - pointing out the arguments - and an Insertion (><) - pointing out
where and what to insert. Additionally, they contain a schema reference (S<>) -
pointing out the definition of the Function with mappings from arguments to
function values. It will be convenient to write the schema reference first under the
Function symbol, then the Condition, and the Insertion last. This gives a convenient
execution sequence. The schema tells what arguments are permissible. The actual
arguments are pointed out by the Condition. Each value combination is checked
against the schema. Their function value is pointed out and used in the Insertion.

Several arguments may map to one function value. The arguments may be pointed
out explicitly by F<> or implicitly if the Condition of the function is not stated. If the
Tip of the instruction branch contains an Instruction only, ie. ><, then the ‘function’
value is put at the corresponding Tip of the write branch. Note that there may be
several Tip-s in the control branch corresponding to one Tip in the instruction branch,
and the instruction branch may have several Tip-s. The explicit navigation beneath
the Condition and Instruction of a Function must satisfy the navigation in the
definition of the Function. Some Function applications may only have implicit
references to the arguments, as we may use an Instruction without a Condition.

If the Function uses more than one arguments, they have to be referenced explicitly.
The write Instruction, without a Function, copies the arguments to the their
destination one-by-one.

15

15

7 Overview of Insertion logic

The control branch is already executed down to the items corresponding to the Tip-s
of the read branch and the execution has returned up to an Instruction. One and the
same item may hold both the Condition and the Instruction. This item may be a
function (F), ie it contain a schema reference (F (S<>)). The Condition is executed
before the Insertion. The items satisfying the Condition are tagged with Status 2
(Satisfied.

Step 6 is executed for the Instructing item, and the control is given to Step 2 of the
same item. The instructing item is tagged with Status 1 (Instructing and the
corresponding controlled item is tagged with Status 3 (Satisfied.

The instruction branch is executed in the same way as the condition branch. The
instruction branch may contain its own sub-Conditions. In order to distinguish
Satisfied items of the main Condition from the Satisfied items of the Instruction, the
controlled items according to the Instruction are tagged with both Status2 and
Status 3. Of the same reason, the controlled items of sub-Conditions and
sub-Instructions may have their own Status n, as well. I am though wondering if for
the branches of the sub-Conditions it is satisfactory to do the backtracking without
use of extra Status n in the control branches. This is for further study.

The instruction branch may have three segments. The first segment acts similar to a
condition branch, and is used to navigate the control to the right item for starting
insertions.

The second segments of an instruction branch contains fixed Insertions. The
corresponding items of the write branch are tagged with a Status3 both for the first
and second segment. The second segment is copied into the write branches.

When all the Tip-s of the second segment are reached, ie or eg when the third
Instruction is reached, and all fixed insertions are finished, the execution is
backtracking - like in the main condition branch - up to the main Instruction.
For each tagged Tip of the write branch with Status3 (Satisfied, the control branch is
executed along the Status2 (Satisfied tags corresponding to the condition branch.
The Tip-s of the condition branch are reached. We may call their corresponding
items in the control branch for c-Tips. They are not actual Tip-s, as they may contain
further details, that the Tip-s of the condition branch do not contain.

When the control head is at the first c-Tip, the write head shall be positioned at the
first w-Tip by following the Status3 (Satisfied tags. The positioning is controlled by
the read head in the condition branch and the instruction head in the instruction
branch.

When the execution of the entire main Condition is completed, all Status1, Staus2
and Status3 tags are cleaned up.

16

16

8 Copying

The second last paragraph of the previous section describes copying from the control
branch to the write branch. The source is referenced by the condition branch, and
the sink is referenced by the instruction branch.

For each c-Tip, the items under the c-Tip are copied to the corresponding w-Tip, ie.
from the first c-Tip to the first w-Tip, from the second c-Tip is attached to the first
w-Tip etc. Then this process is repeated for each w-Tip. The copying stops when
there are no more c-Tip-s to copy from or are no more w-Tip-s to copy to.

Note that when copying, the first level under the c-Tip-s are concatenated under
each w-Tip. The sub-ordinate levels are copied untouched.

The insertion starts from the start of the list under the w-Tip and may appear in
reversed order compared to the list under the c-Tip. At first, I was unhappy with this,
as it would be more convenient to have the insertions at the end, and in correct
order. This will require navigation to the end before insertion starts. This is for
further study. See at the end of this section. Later, I realized that this reversal of a list
is what is needed for managing two-way references. Hence, this functionality is very
important. In another paper, we will call this reversal function R<>.

If copying from several c-Tips to the same w-Tip, the w-Tip will appear as a
concatenation of strings (maybe in reverse order of the c-Tip-s). We may call this
addition of lists.

For implementation of insertions at the end of the lists, it would be convenient to
have two-way pointers between the elements - in a circle, like in Codasyl network
databases. This may be implemented in the internal layer of a multilevel architecture.
This we do not discuss here, as we want to address the primitives. We want to know
that the primitives are sufficient, even if they are not practical. If we defer the
insertions to the internal layer, then the detailed discussions in this and the next
section are not relevant.

9 Deletion

This section gives a new introduction to and extension of the deletion notion.

We have so far provided Deletion as a consequence of a Failed Condition. The
expression : <> :! will always Fail, as it states that there is a Condition on the

17

17

conditioned item that it shall not exist. However, this interpretation only applies for
main Conditions. For sub-Conditions in a condition branch, the conditioned item
refers to a controlled item in a control branch. It is the controlled item that will be
Deleted.

In the instruction branch we have a Tip A, that we call Tip Ar, and this item refers to
an entry A in the write branch. We assume that we have already navigated to A, such
that A is a different data item from Ar. We want to delete the A. This we do by
stating a sub-condition on Ar that states that Ar cannot exist, Ar<>Ar !. This
expression is copied for execution into the write branch, which will contain A<>A !.
When this expression is executed, A will be deleted. When the sub-Condition Ar<>Ar !
is executed in the instruction branch, it will only result in a Failed Ar, not Deletion of
Ar. This way, we can state impossible conditions in the instruction branch without
them destroying themselves.

Note that it is not impossible to write A <> A !, but its execution may result in a
deletion of the whole expression. This presupposes that a Failed Condition results in
a Deletion, which we at a later stage may abandon.
Note that A <> A >< : is impossible to write in three dimensions, since <> and ><
denote the same connection in three dimensions. However <><> and ><>< are
possible expressions.

We make the following example and discussion to show the feasibility of the
language. The following is not what the user will see.

In the instruction branch we have a Tip Ar that refers to an entry A in the write
branch. A contains items A (x1, x2 etc. A contains n items, ie in general, A (:,:,..
In the condition branch we have a Tip Br that refers to an entry B in the control
branch. B contains items B (y1, y2 etc. B contains m items.
We want to delete m items in A, corresponding to the m items in B.
Under the first Br (: item, we state a fixed Instruction reference to the first A (: item
with a sub-condition that there shall not exist Ar (: <> : !. Hence, (:<> : ! will be added
to A (:. When this expression is executed, the item A (: will be deleted. However, we
want to have one deletion for each B (: item. Therefore, only the first A (: shall be
deleted. Hence, we have to add the sub-condition <> :, ; !. Put together, this will read

<>: ... Br (: (<> : (... Ar (: (<>:, ; !), ><), ; !), ><)).

Note that an Instruction without an instructing item, ie ><, is interpreted as a delete
of the current item.

The main Condition is stated at the left hand side of the above expression. The two
other Conditions are sub-Conditions. Note that the last exclamation mark is on A (:.
Exclamation marks are executed last, ie when backtracking. Therefore, we here have
placed it last.

The inner parenthesis states that the item A (: shall have no (!) previous item (;), ie A
(: will be tagged with Satisfied for the first item only.

18

18

When an A (: item is deleted, we have to delete one B (: item, as well. Hence, we
write

<>: ‘&(& Br (: (<> : (‘&(& Ar (: (<>:, ; !), ><), ; !), ><)).

The end, :, ; !) ><)), is using the same Condition as of B (:.
Here we have replaced the dot notation ... with ‘& (& for any arbitrary navigation.
This arbitrary navigation is replaced by concrete navigation in a each application.
Note that we do not have right hand parentheses for the left hand in this navigation
expression.

We have deleted an item B (: which has no previous item. Then we want to repeat
this process until A is empty. This is done by attaching a schema reference S<> at the
Tip of the expression that refers to the top of the expression to be repeated.

We will now write the same expression in the two-dimensional notation:

<> : ‘& (& Main Condition
B The subtraction list
: Its first item

<> : ‘& (& Sub-Condition
A Referring to

: this item
<> : ; ! has not a a previous item

>< Delete the first/current item of A,
ie insert nothing=Delete

; ! The first item of B has not a previous
>< Delete the first/current item of B
S <> S ‘ ‘ B If B has one (or more) items left,

Go-to B and repeat the process

All the lines above are stated in the condition and instruction branches. They refer to
control and write branches. The last line above does not appear/correspond to items
in the control or write branches. It refers to B in the condition branch, that refers to
B in the control branch.

In the write Instruction, we write blank in the two- and one-dimensional notations.
Blank means : !, ie write the item Not (in the write branch) , which is interpreted as a
Delete Instruction.

When all B (: items are deleted, a similar number of A (: items are deleted. Hence,
A ::= A - B.

The reason why we study these examples is that a Number is defined to be the
length of a list. We have just shown how we can do addition and subtraction of
Numbers. We have shown elsewhere how the length of a list may be turned into
Arabic numbers.

19

19

There is a problem with the branching conditions. I have assumed that in a Condition
branch we first navigate to the Top, thereafter navigate downwards. This was
convenient in the above examples, but may not always be so.

10 Instruction

We have used a single Instruction to indicate Delete. A single Instruction is an
Instruction without any argument.

We additionally have used
- a single Instruction to indicate navigation
- an additional Instruction to indicate Fixed insertion
- a third single Instruction to indicate copying from the Tip-s of the control branch

We’ll start with discussing the single Instruction. In a three-dimensional notation, an
Instruction and a Condition are along the same axis, but in different directions.
Backtracking over a Condition is similar to Forward execution over an Instruction.
The only difference is that you may only backtrack over a Condition if you already
have executed forward over the Condition. The controlled item is tagged to indicate
that the forward execution has already taken place. Sub-Conditions may be reached
during forward execution of the Condition branch. The Condition-s are validated
during the backtracking of the condition branch. During forward execution, the
controlled items - in the control branch - are tagged by Status 2, and the conditioning
item in the condition branch is tagged by Status 1. The values are Conditioned,
Conditioning or blank.

An Instruction is reached via a backward execution of a condition branch.

However, the item by the Instruction in the condition branch may tagged by Status 1,
as well. The additional vales are Instructed and Instructing. The corresponding write
branch is tagged with Status 2.

The instruction branch consists of three segments as indicated above. Since a single
Instruction without an argument is used to indicate deletion, we may use a double
Instruction (><><) to indicate copying from the control branch. In a practical notation,
we may use separate symbols or words to indicate the three segments. Here we
discuss how we can do with a minimal set of symbols.

We will need a status to indicate which segment an item belongs to, as we have no
central logic. We will need to distinguish Navigation, Fixed insertion and maybe
Copying. These values may be stored in a Status 4 in the insertion branch, or may be
added as values to Status 2.

20

20

Note that since we have introduced an explicit deletion symbol, ie the empty ><, we
need not have deletion as an outcome of Failed Conditions. With the explicit
deletion, deletion can be the outcome of a Satisfied Condition, as well. In search
operations, an item will be skipped - not deleted - if the sub-condition Fails.

We use the same Status 2 in the write branch as of the control branch. A Failed
Instruction has no consequence for the Conditioned item of the main Condition or
for the Instructed item elsewhere. Hence the effects of Failed Instructions and Failed
Conditions are different.

11 Execution overview

When executing a condition branch, we fine all control branches which each satisfies
the entire condition branch. Hence, when having found one control branch that
satisfies all, the execution of the condition branch has to be repeated to find more
control branches until none are left.

An Instruction may be found when finding a Satisfying control sub-branch. This
means that if we want the Instruction to apply only for fully Satisfied control
branches, we need to place the Instruction on the conditioned item. The instructing
branch may address a write branch that overlaps with the control branch.

The instruction branches are executed in a similar way as of the condition branches.
The three segments of the instruction branch are initiated by >< ..., >< ... ><><. The
paths, indicated by ..., may be empty. Hence, each of the segments may be empty,
ie ><, >< ... ><, and >< ... >< ... ><, which means deletion of the last entry. Deletion of
an entry may cause deletion of all subordinate items.

12 States and Naming

A name in front of a Condition is a local name of that condition branch. Hence, if we
have a Condition on a data item, eg Driver<> ..., Driver is a local name of this
Condition.

There is no distinction between a Function and other data having a Condition.
However, a function has two additional features:
 a Function may have a write Instruction, ie >< ..., telling where to put the

function result
 a Function may contain an explicit schema reference, ie S<> ..., specifying the

mapping from any combination of arguments to the function value; the schema
references may be nested

21

21

Deletion of a controlled item corresponding to A is handled as an empty Insertion, ie
A ><.

An implicit deletion during insertion of a controlled item corresponding to A is
carried out by a Failed Condition, ie from A <> !. During selection, a failed Condition
results in exclusion from the search result, not deletion.

An explicit deletion is stated by a Satisfied Condition, ie. A (<> ...), >< or A
(<> ...), >< ... ><.

A Condition may contain several sub-Conditions recursively. Each sub-Condition acts
separately like the main Condition. However, the main Condition acts on its
conditioned item only. A sub-Condition acts on the control items corresponding to its
conditioned item. For the main Condition, the controlled item and the conditioned
item are one and the same.

Sometimes we may write the conditioning item explicitly, eg A <> A ‘&(&. Other
times we may omit the conditioning item, eg A <> ‘&(&. The meaning is the same.
Note that the name of an item is contained in that item. The item is indicated by a
colon :, its name is indicated by : (:, each of its letters are indicated by : (: (:, and each
pixel by : (: (: (:.

From the above, it follows that a valid reference may be written A <>: ‘&(&. This
means that the name of the conditioned item will not be tested in the Condition.

The functioning of Insertions depends on the nesting of sub-Insertions, as described
above. Hence, Status 4 will prescribe what functioning to be executed.

I have been wondering if Insertion symbols should be copied into the write branch to
indicate what editing has been carried out. This may follow from copying Conditions
and Functions into the control branch to indicate what execution is carried out. This
may be needed if capabilities of a full roll back is wanted. This is for further study on
persistent databases.

	Preface
	1 States and Status
	2 Overview
	3 Execution
	4 Execution of the Condition branch
	5 Execution of Conditions
	6 Branching of the Condition branch
	6 Execution of the Instruction branch
	7 Overview of Insertion logic
	8 Copying
	9 Deletion
	10 Instruction
	11 Execution overview
	12 States and Naming

